
GraphPool: A High Performance Data

Management for 3D Simulations

Patrick Lange, Rene Weller, Gabriel Zachmann

University of Bremen, Germany

cgvr.cs.uni-bremen.de

ACM SIGSIM PADS

15-18 May 2016, Banff, AB, Canada

Data: Central Part in Simulations

 Generation, management and distribution of the global simulation

state

 Managing the communication of many software components

Motivation Related Work Our Approach Results Conclusion

Challenges in Data Engineering for Simulations

1. Performance (≥ realtime)

 Simulation implementation vs. data storage

2. Scalability to massively parallel access

 Parallelization of simulation workflow

 Concurrency control

3. Adaptability to new data formats

 Enrichment of simulation models

Motivation Related Work Our Approach Results Conclusion

Relational Databases for Simulations

 Major data management used in modern architectures for 3D

simulation applications

 Strives for data consistency and transactional safety

 Sacrifices performance and adaptability

 Schema and data synchronization for distributed 3D simulations

[Hoppen‘14,Rossmann‘12]

 Store visualization data with collaboration [Julier‘10,Walczak‘12]

or not [Schmalstieg‘07]

 Static data schema [Haist‘05] vs flexible data schema

[Schmalstieg‘07]

Motivation Related Work Our Approach Results Conclusion

Relational Database Technology

 Motivation: Well-researched, easy-to-use, deliver out-of-the-box

functionality

Quick integration & implementation

Relational database technology (aggregate queries, caching, consistency, …)

X Scalability and performance of massively parallel acess due to

serialization of queries

Adaptability to new simulation data

Performance bottleneck when transforming object-oriented data into

table format of relational databases

X
X

Not the right tool for the job

Motivation Related Work Our Approach Results Conclusion

Our Approach

 Replace relational database technology in

complex simulation frameworks

 No data transformation needed

 No lock-based synchronization of

transactions

 Our approach introduces

 Graph-based data structure

 Wait-free concurrency control

 Key-based queries

 Emulation of relational access queries

System

Components

Lock-based

Transactions

Relational queries

DB

Table data

Data

Transformation

Motivation Related Work Our Approach Results Conclusion

Our Approach

 Replace relational database technology in

complex simulation frameworks

 No data transformation needed

 No lock-based synchronization of

transactions

 Our approach introduces

 Graph-based data structure

 Wait-free concurrency control

 Key-based queries

 Emulation of relational access queries

Wait-Free API

GraphPool

Key-based

queries

System

Components

Object data

Motivation Related Work Our Approach Results Conclusion

Recap - Wait-free Hash Maps: Concept

 Assignment of unique identifiers to

each data packet which is

exchanged between software

components

 Every data packet is stored inside a

hash map which resembles the

complete system state

 Relies on memory cloning and

atomic operations

Motivation Related Work Our Approach Results Conclusion

Key-

Identifiers

Recap - Wait-free Hash Maps: Features

 Guarantees access to the shared data structure in a finite number

of steps (e.g. as traditional thread or OpenMP implementation)

 Does not need any traditional locking mechanism

 Delivers high performance even for massive concurrent access

Motivation Related Work Our Approach Results Conclusion

Nested Hash Maps

 Emulating relational access queries requires

 Unique identification of data

 Linking structures between data

 Hash map representation advantages

 Fast insert, deletion and lookup operations: 𝑂(1)

Component

Data

Hash map bucket

H
A

S
H

Data

Hash map bucket

Data

Hash map bucket

Motivation Related Work Our Approach Results Conclusion

Nested Hash Maps

 One nested hash map emulates one table

 𝑛 ⋅ 𝑚 table is represented by 𝑚 object keys and 𝑛 member keys

 Every key acts as a SQL primary key

 Easy extension of stored data

ID Name University Degree

23 Smith Stanford Prof.

42 Jones Yale Ph.D.

227 Walker Cambridge Ph.D

Hash function

Object key

Member key

Motivation Related Work Our Approach Results Conclusion

Property Graph Model

Motivation Related Work Our Approach Results Conclusion

 Arrange nested hash maps in graph in order to enable relational

queries via graph traversal

 Annotate and organize data with additional information (e.g. meta

data)
GraphPool

GraphNodes

Properties

Relationships

Records Records

Organize

Have

Reference via

object-key

Reference via

member-key

History

Labels
Have

Keys

Property Graph Model: Example

ID Name University

23 Smith Stanford

42 Jones Yale

Reference Paper Contact

Author

WK3 The 101

Simulation

23

LID ID Referenc

e

1 23 WK3

2 42 WK3

Motivation Related Work Our Approach Results Conclusion

Relational table representation Our representation

Person Person

„Smith“„Jones“

Paper

„101“

StanfordYale

Author

„Uni“

„Contact“

Query Examples

ID Name University

23 Smith Stanford

42 Jones Yale

Reference Paper Contact

Author

WK3 The 101

Simulation

23

LID ID Referenc

e

1 23 WK3

2 42 WK3

Motivation Related Work Our Approach Results Conclusion

Relational table representation Our representation

Person Person

„Smith“„Jones“

Paper

„101“

StanfordYale

Author

„Uni“

„Contact“

Query Examples

ID Name University

23 Smith Stanford

42 Jones Yale

Reference Paper Contact

Author

WK3 The 101

Simulation

23

LID ID Referenc

e

1 23 WK3

2 42 WK3

Relational table representation Our representation

Person Person

„Smith“„Jones“

Paper

„101“

StanfordYale

Author

„Uni“

„Contact“

Motivation Related Work Our Approach Results Conclusion

Evaluation

 Performance comparison of GraphPool, (on-disk/in-memory)

relational databases and lock-based GraphPool

 insert, select and aggregate queries

 Single and massively parallel access scenarios

 Verification of query results

 Test configuration:

 C++ with -O3 optimization

 Each test averages 10,000 read/write operations with varying data

types (vectors, matrices, pointcloud data, strings, numerals)

Motivation Related Work Our Approach Results Conclusion

Results: Single Access

Motivation Related Work Our Approach Results Conclusion

Results: Single Access

Motivation Related Work Our Approach Results Conclusion

Results: Multi Access

Motivation Related Work Our Approach Results Conclusion

Results: Multi Access

Motivation Related Work Our Approach Results Conclusion

Our Contribution

 Novel data management for sophisticated (massively parallel)

(3D) simulation applications

 Allows non-locking read and write operations

 No deadlock, no starvation of operations

 Highly responsive, low-latency access for any number of simulation

components

 Emulates relational database access queries

 Outperforms traditional approaches by a minimum of factor 10

 
Motivation Related Work Our Approach Results Conclusion

Performance Scalability Adaptability

Thank you for your attention

Questions?

Patrick Lange, Rene Weller, Gabriel Zachmann

{lange,weller,zach}@cs.uni-bremen.de

This research is based upon the project KaNaRiA, supported by

German Aerospace Center (DLR) with funds of German Federal

Ministry of Economics and Technoloy (BMWi) grant 50NA1318

