
Wait-free Hash Maps in the

Entity-Component-System Pattern

for Realtime Interactive Systems

Patrick Lange, Rene Weller, Gabriel Zachmann

University of Bremen, Germany

cgvr.cs.uni-bremen.de

9th SEARIS Workshop at IEEE VR

19-23 March 2016, Greenville, SC

Data: Central Part in RIS Development

 Generation, management and distribution of the global simulation or

world state for all software components and/or users

 Usually many independent inhomogeneous software components

need to communicate and exchange data in order to generate this

global state

System

Motivation Related Work Our Approach Results Conclusion

Requirements in RIS Development

 Reusability

 (Realtime) performance

 Scalability

System A

System

System

System B

Motivation Related Work Our Approach Results Conclusion

Entity-Component-System (ECS) Pattern

 Major design pattern used in modern architectures for Realtime

Interactive Systems

 Strives for high reusability and architectural scalability

 Novel architectural software concepts

 Performance and scalability for massively parallel access?




Motivation Related Work Our Approach Results Conclusion



[Wiebusch’15]

Entity-Component-System (ECS) Pattern

 Introduces three software architecture concepts

 Entity: General purpose object, defined as unique id

 Component: Raw data for one aspect of a general purpose object

 System: Runs continuously and applies global actions on Entities

 Decouples high-level modules such as physics, rendering or simulation from

low-level objects

Motivation Related Work Our Approach Results Conclusion

ECS: Game-based Example

Position Velocity Range Health

Physics Input

Systems

Components

Base Enemy Tower

Entities

Motivation Related Work Our Approach Results Conclusion

ECS: Game-based Example

Position Velocity Range Health

Physics Input

Systems

Components

Base Enemy Tower

Entities

Motivation Related Work Our Approach Results Conclusion

ECS: Game-based Example

Position Velocity Range Health

Physics Input

Systems

Components

Base Enemy Tower

Entities

Motivation Related Work Our Approach Results Conclusion

ECS: Game-based Example

Position Velocity Range Health

Physics Input

Systems

Components

Base Enemy Tower

Entities

Motivation Related Work Our Approach Results Conclusion

ECS: Shared Data Structures

 Current RIS applications inherit many Entities, Components and

Systems

 Parallelization of System access necessary in order to preserve

realtime performance constraints

 The container of Components becomes a shared data structure

 ECS does not give guidelines or specification how to solve this

problem

 

Motivation Related Work Our Approach Results Conclusion



Concurrency Control for RIS

 Process of managing simultaneous execution of software

components on shared global word/simulation state

 RIS reserach concerns low-level concepts and high-level

concepts for parallelism [Latoschik‘11,Rehfeld’13,Knot‘14]

 High-performance architectures for e.g. sophisticated (3D)

simulations (C/C++, CUDA, OpenMP, OpenGL..)

Responsiveness

ConsistencyScalability

Motivation Related Work Our Approach Results Conclusion

Wait-free Hash Maps

 Guarantee access to a shared

data structure in a finite number

of steps (e.g. as traditional

thread or OpenMP

implementation)

 Does not need any traditional

locking mechanism

 Deliver high performance even

for massive concurrent access

Motivation Related Work Our Approach Results Conclusion

Responsiveness

ConsistencyScalability

Wait-free Hash Maps: Basic Idea

 Assignment of unique identifiers

to each data packet which is

exchanged between software

components

 Every data packet is stored

inside a hash map which

resembles the complete system

state

 De-coupling and parallelization

of read, write and data deletion

processes via atomic operations

and memory cloning [Lange‘14,

Lange‘15]

Motivation Related Work Our Approach Results Conclusion

[Adapted from Lange’15]

Wait-free Hash Maps: Applications

 Massive concurrent access (> 50 threads) per simulation/system

frame

 Multi-agent system based simulation, simulation-based optimization

Motivation Related Work Our Approach Results Conclusion

Frame 1

Frame 2

SYNC

System #1 System #n…

Components in Hash Map

System #1 System #n…

Components in Hash Map

Integration of Wait-free Hash Maps

Motivation Related Work Our Approach Results Conclusion

Integration of Wait-free Hash Maps

 All Components reside in our wait-free hash map

Motivation Related Work Our Approach Results Conclusion

Integration of Wait-free Hash Maps

 All Components reside in our wait-free hash map

 Components (also collections) are accessible via unique keys

Motivation Related Work Our Approach Results Conclusion

Integration of Wait-free Hash Maps

 All Components reside in our wait-free hash map

 Components are accessible via unique keys

 Entity composition as list of Component keys

Motivation Related Work Our Approach Results Conclusion

Wait-free Hash Maps: Double Buffering

 Producer and consumer version of data within hash map

 Atomic reference counter guards consumer versions

 Every write access to the hash map generates a clone of the

manipulated data

Motivation Related Work Our Approach Results Conclusion

System A
Producer

Consumer

Hash map bucket

H
A

S
H

Wait-free Hash Maps: Double Buffering

 Producer and consumer version of data within hash map

 Atomic reference counter guards consumer versions

 Every write access to the hash map generates a clone of the

manipulated data

Motivation Related Work Our Approach Results Conclusion

System A
Producer

Consumer

GET(KEY)

Wait-free Hash Maps: Double Buffering

 Producer and consumer version of data within hash map

 Atomic reference counter guards consumer versions

 Every write access to the hash map generates a clone of the

manipulated data

Motivation Related Work Our Approach Results Conclusion

System A
Producer

Consumer
Consumer

Consumer
Consumer

Consumer

WRITE(KEY)

Wait-free Hash Maps: Double Buffering

 Producer and consumer version of data within hash map

 Atomic reference counter guards consumer versions

 Every write access to the hash map generates a clone of the

manipulated data

 Parallel read access can return, in accordance to RIS setup, any

old state

Motivation Related Work Our Approach Results Conclusion

System A
Producer

Consumer
Consumer

Consumer
Consumer

Consumer

WRITE(KEY)

System B

READ(KEY)

Integration of Wait-free Hash Maps

Motivation Related Work Our Approach Results Conclusion

Integration of Wait-free Hash Maps

Motivation Related Work Our Approach Results Conclusion

Integration of Wait-free Hash Maps

Motivation Related Work Our Approach Results Conclusion

Integration of Wait-free Hash Maps

Motivation Related Work Our Approach Results Conclusion

Integration of Wait-free Hash Maps

Motivation Related Work Our Approach Results Conclusion

Integration of Wait-free Hash Maps

Motivation Related Work Our Approach Results Conclusion

Integration of Wait-free Hash Maps

Position Velocity Range Health

Physics Input

Systems

Components

Base Enemy Tower

Entities

Motivation Related Work Our Approach Results Conclusion

Integration of Wait-free Hash Maps

Motivation Related Work Our Approach Results Conclusion

//Define OpenMP parallelization with x threads

#pragma omp parallel for num_threads(x)

for(all Entities of System)

{

for(all WriteKeys of Entity)

{

Component = Hashmap.get(WriteKey)

// Change component

// ….

Clone = Hashmap.put(Component, WriteKey)

}

for(all ReadKeys of Entity)

{

Component = Hashmap.get(ReadKey)

…..

}

}

Integration of Wait-free Hash Maps

Motivation Related Work Our Approach Results Conclusion

//Define OpenMP parallelization with x threads

#pragma omp parallel for num_threads(x)

for(all Entities of System)

{

for(all WriteKeys of Entity)

{

Component = Hashmap.get(WriteKey)

// Change component

// ….

Clone = Hashmap.put(Component, WriteKey)

}

for(all ReadKeys of Entity)

{

Component = Hashmap.get(ReadKey)

…..

}

}

Integration of Wait-free Hash Maps

Motivation Related Work Our Approach Results Conclusion

//Define OpenMP parallelization with x threads

#pragma omp parallel for num_threads(x)

for(all Entities of System)

{

for(all WriteKeys of Entity)

{

Component = Hashmap.get(WriteKey)

// Change component

// ….

Clone = Hashmap.put(Component, WriteKey)

}

for(all ReadKeys of Entity)

{

Component = Hashmap.get(ReadKey)

…..

}

}

Integration of Wait-free Hash Maps

Motivation Related Work Our Approach Results Conclusion

//Define OpenMP parallelization with x threads

#pragma omp parallel for num_threads(x)

for(all Entities of System)

{

for(all WriteKeys of Entity)

{

Component = Hashmap.get(WriteKey)

// Change component

// ….

Clone = Hashmap.put(Component, WriteKey)

}

for(all ReadKeys of Entity)

{

Component = Hashmap.get(ReadKey)

…..

}

}

Component-wise Queues

 Different Components are more frequently used than other

Components

 Collision detection (1000 Hz) vs. animation (30 Hz)

Motivation Related Work Our Approach Results Conclusion

Component-wise Queues: Example

Motivation Related Work Our Approach Results Conclusion

Physics

Position Velocity Collision Flag

Old

New

 At startup: Create Component-type sorted list

 Sort created cloned Components into corresponding queues for

each Component-type

 Each list node contains markup for changes within queue

 Iteration checks every node for markup and queues

Component-wise Queues: Example

Motivation Related Work Our Approach Results Conclusion

Physics

Position Velocity Collision Flag

Old

New

 At startup: Create Component-type sorted list

 Sort created cloned Components into corresponding queues for

each Component-type

 Each list node contains markup for changes within queue

 Iteration checks every node for markup and queues

Component-wise Queues: Example

Motivation Related Work Our Approach Results Conclusion

Physics

Position Velocity Collision Flag

Old

New

 At startup: Create Component-type sorted list

 Sort created cloned Components into corresponding queues for

each Component-type

 Each list node contains markup for changes within queue

 Iteration checks every node for markup and queues

 Component-wise queues are either located inside hash map

(centralized) or System implementation (decentralized)

 Centralized in three variations: Frequency-based, continously

threaded, threaded on-demand

 Rely on read access notifications via atomic operations

Memory Management

Motivation Related Work Our Approach Results Conclusion

Evaluation

 Performance comparison of centralized and decentralized

memory management implementations to original implementation

 Performance comparison of lock-based and wait-free hash map

implementation

 Test configuration: Spaceflight mission simulator KaNaRiA

 C++ with -O3 optimization

 Each test averages 10,000 read/write operations with varying

Component types (vectors, matrices, pointcloud data, strings,

numerals)

Motivation Related Work Our Approach Results Conclusion

Results: Access Performance

Motivation Related Work Our Approach Results Conclusion

Results: Memory Management

Motivation Related Work Our Approach Results Conclusion

Results: Memory Management

Motivation Related Work Our Approach Results Conclusion

Best Practices

Few Systems

Small Component data Big Component data

Centralized (periodic with any

frequency) management

Centralized (periodic with high

frequency) management

Many Systems

Small Component data Big Component data

Decentralized management Decentralized management

Motivation Related Work Our Approach Results Conclusion

Our Contribution

 Novel extension of the ECS pattern for high performance double-

buffered wait-free hash maps

 Allows non-locking read and write operations

 Highly responsive low-latency Component access for any number of

Systems

 Novel efficient centralized and decentralized memory

management for double-buffered wait-free hash maps

 Reduces their memory consumption greatly by more than a factor of

10 while maintaining their high-performance access

 
Motivation Related Work Our Approach Results Conclusion

Future Work

 High-level concepts for adaptive memory management

 Determine current composition of ECS architecture

 Autonomous switch between centralized and decentralized memory

management

System System

? ?
?

?

Motivation Related Work Our Approach Results Conclusion

Thank you for your attention

Questions?

Patrick Lange, Rene Weller, Gabriel Zachmann

{lange,weller,zach}@cs.uni-bremen.de

This research is based upon the project KaNaRiA, supported by

German Aerospace Center (DLR) with funds of German Federal

Ministry of Economics and Technoloy (BMWi) grant 50NA1318

